Try Our Apps


Challenge: Tongue Twisters

bezier curve

bezier curve in Technology

A type of curve defined by mathematical formulae, used in computer graphics. A curve with coordinates P(u), where u varies from 0 at one end of the curve to 1 at the other, is defined by a set of n+1 "control points" (X(i), Y(i), Z(i)) for i = 0 to n.
P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)]
B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i)
C(n, i) = n!/i!/(n-i)!
A Bezier curve (or surface) is defined by its control points, which makes it invariant under any affine mapping (translation, rotation, parallel projection), and thus even under a change in the axis system. You need only to transform the control points and then compute the new curve. The control polygon defined by the points is itself affine invariant.
Bezier curves also have the variation-diminishing property. This makes them easier to split compared to other types of curve such as Hermite or B-spline.
Other important properties are multiple values, global and local control, versatility, and order of continuity.
[What do these properties mean?]

The Free On-line Dictionary of Computing, © Denis Howe 2010
Cite This Source

Word of the Day

Word Value for bezier

Scrabble Words With Friends

Nearby words for bezier curve