Advertisement

Advertisement

Heisenberg

[ hahy-zuhn-burg; German hahy-zuhn-berk ]

noun

  1. Wer·ner Karl [ver, -n, uh, r, kah, r, l], 1901–76, German physicist: Nobel Prize 1932.


Heisenberg

/ ˈhaizənbɛrk; ˈhaɪzənˌbɜːɡ /

noun

  1. HeisenbergWerner Karl19011976MGermanSCIENCE: physicist Werner Karl (ˈvɛrnər karl). 1901–76, German physicist. He contributed to quantum mechanics and formulated the uncertainty principle (1927): Nobel prize for physics 1932
“Collins English Dictionary — Complete & Unabridged” 2012 Digital Edition © William Collins Sons & Co. Ltd. 1979, 1986 © HarperCollins Publishers 1998, 2000, 2003, 2005, 2006, 2007, 2009, 2012


Heisenberg

/ zən-bûrg′ /

  1. German physicist who founded the field of quantum mechanics in 1925 and elaborated the uncertainty principle in 1927. He was awarded the Nobel Prize for physics in 1932.


Discover More

Biography

Philosophical problems concerning what it means to know something about the world have always been of interest to many scientists, but philosophy underwent an unexpected twist with the advent of what we now call the uncertainty principle or the Heisenberg uncertainty principle, after its discoverer. A brilliant physicist, Werner Heisenberg had made discoveries by the age os 24 that would garner him a Nobel Prize a few years later (in 1932), namely, a way of formulating quantum mechanics using the then-new branch of mathematics called matrix algebra. In 1927, he formulated a quantum mechanical indeterminacy or uncertainty principle, which concerns how accurately certain properties of subatomic particles can be measured. Earlier physical theories had held that the accuracy of such measurements was limited only by the accuracy of available instruments. Heisenberg overturned this notion by demonstrating that no matter how accurate the instruments, the quantum mechanical nature of the universe itself prevents us from having complete knowledge of every measurable property of a physical system simultaneously. For example, the more precise our knowledge of a subatomic particle's position, the less precise our knowledge of its momentum; more profoundly, the particle does not merely have a momentum that we simply cannot accurately measure, but literally does not have a determinate momentum. This principle had profound implications not just for physics, but also for twentieth-century philosophy, as it threw into question certain basic principles such as causality and determinacy, and suggested that the very act of observing the universe profoundly shapes it. Nonetheless, Heisenberg's quantum mechanical equations have led to physical theories with vast practical applications, bringing us everything from the transistor to new drugs.
Discover More

Example Sentences

The interpretation draws a line—the so-called Heisenberg cut—between systems that obey quantum laws and observers that follow classical physics.

Heisenberg’s principle expressed the shocking realization that the unbroken chain of cause and effect deduced from Newtonian physics was an illusion, an approximation that nature did not observe on the subatomic scale.

Heisenberg is believed to have escaped on a bicycle, his backpack stuffed with cubes of the heavy metal, before the Allies arrested his scientists and interrogated them in an effort to find out the reactor’s location.

The Heisenberg uncertainty principle — which states that if the location of an object is well-known, its momentum cannot be — suggests that an electron confined within a nucleus would have an unreasonably large energy.

At the moment, all that’s certain is uncertainty—a notion that would surely please even Heisenberg himself.

I actually look forward to my FUN exercise session every afternoon, if only to see what Heisenberg is up to next!

For the first time, what Heisenberg does, he does—knowingly, consciously—for himself.

For a moment or two, it looked like Walter “Heisenberg” White might actually become “Mr. Lambert.”

We heard it for the first time when Heisenberg was in the bunker with Saul.

Walt knows that he can save his family now only by leaving it—by erasing Walter White and installing Heisenberg in his place.

I was attempting to confound Heisenberg's statement; but instead I think between us we have confused the issue.

Heisenberg's principle showed that the law of cause and effect weren't absolute.

Advertisement

Advertisement

Advertisement

Advertisement


heirshipHeisenberg uncertainty principle