ellipse vs. hyperbola

noun

Geometry.
  1. a plane curve such that the sums of the distances of each point in its periphery from two fixed points, the foci, are equal. It is a conic section formed by the intersection of a right circular cone by a plane that cuts the axis and the surface of the cone. Typical equation: (x 2 / a2 ) + (y 2 / b2 ) = 1. If a = b the ellipse is a circle.

noun

Geometry.
  1. the set of points in a plane whose distances to two fixed points in the plane have a constant difference; a curve consisting of two distinct and similar branches, formed by the intersection of a plane with a right circular cone when the plane makes a greater angle with the base than does the generator of the cone. Equation: x 2 /a 2 − y 2 /b 2 = ±1.